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1. Explainability

* Neural networks learn a very complex mapping between inputs and outputs
» Explainability try to give insights about the decisions
* Model-agnostic (not relying on internal functioning)
* Local explanations: differences in the model decisions for small variations of the input
* Several drawbacks:
1. Requires data (confidentiality/privacy)
2. Selecting representative data is hard
3. Explain the decision for this input and this input only
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 No ground fruth available: glass-box model
* Spearman correlation: assign similar (relative) weights
* Precision/recall: returned features are important and most important features are found
* Insertion/deletion: returned features affect the model predictions
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5. CONCLUSION

 Model-agnostic global explanations working without input data
 Competitive results against usual methods
* Substantially better when no data or not very specific data is available

* Code available on Github
— Experiments with other type of model, e.g CLIP (cross-modal regression)
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