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1. Distinctive Image Captioning

e Image captioning training datasets only describe most salient objects, common to many images
e Meftrics push the focus on words common across different images, not specific ones
o Image captioning models produce very generic texts describing the image but could describe a lot of others

A couple of dogs standing on a porch
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e Fine-grained alignment to describe the input image and only this one

2. Reinforcement Learning

e Optimize cross-modal similarity of the generated caption and the target image!"!
o Learn to generate a description that lets the retriever identify the image
e Dual encoder (CLIP) projects both modalities separately and compute all the similarities in a batch using simple dot products
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3. Discriminator Reqularization 4. Bidirectional Contrastive Rewards

e CLIP 1s not trained to evaluate written quality e A baseline is subtracted to the reward to reduce variance
o Regularization tfo prevent the model from learning Reward Baseline
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a close up of two brown and black \
dogs wearing a santa hat on a ‘
black and brown dog with o red
hat on a backyard with a fence in
the background

Improve likelihood based
on reward
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e Similarity of another caption from the model

(image-to-text)" or a similar mined image (text-to-image)'<
e Simple MLP using CLIP representations as input e Decoupled contrastive loss uses the closest element In the
| batch for both cross-modal directions

Similarity reward Regularization reward
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5. Weighted Teacher Forcing

e RL learns from high-scoring sequences and ground truth
are good solutions

e RL using GT: learn to reproduce human-written
sequence (TF) but focuses on highly descriptive ones

there I1s an adult bear that 1s walking in the forest
nicture of an exterior place that looks wonderful.

6. Experiments & Results

e Trade-off discriminativeness (recall@k) using generated caption (fixed CLIP model) and writing quality (BLEU, ROUGE,
CIDEr, METEOR and SPICE) on MS COCO
o MLP on top of CLIP can be used as regularization (higher retrieval rate without degrading written quality)
o Weighted Teacher Forcing improves retrieval metrics using only ground truths, without degrading writing quality
o Both cross-modal directions are needed for a caption highly descriptive of this image and this image only
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