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Language GANs fall short

- GANSs are good for approximating continuous data distributions:
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- GANSs for discrete data as text:

> No backpropagation from the discriminator to the generator :
- Reinforcement Learning with Discriminator scores as Rewards
- Noisy, Sparse and Moving Rewards
- Existing language GANs are known to fall short (Caccia et al, 2020)



Cooperative Decoding

-> Use of the discriminator D cooperatively with the generator p for sampling texts
e In Beam Search: DAS [Scialom et. al, 2020b], Discriminative EBM [Ranzato et al., 2019]
e In MCTS: SelfGAN [Scialom et. al, 2021]

-> SelfGAN: Cooperative decoding can be useful for training via Expert Iteration
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-> We show that sampling from q(T) X p(T)D(T) can allow to ensure convergence

(under usual assumptions and a Reward-augmented Maximum Likelihood process (RML) [Norouzi et al., 2016])



GAN vs RML-GAN
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GAN vs RML-GAN

Discrete - GAN D RML-GAN ®, EJ NO

I %A 0

@ Sample M documents frqm generator p

(1) Sample documents from generator p

T 7
. y . .pe (?j ) @ Train the discriminator D
@ Train the discriminator D,

(3) Generate M samples from g o< pD

(3) Train p with rewards from discriminator yi ~ q(yl)

D on generated samples (policy gradient) @ Train p using samples from g

M
1 i [ A '
0<—9+€M Z;Dt(y )VOIOgPG(y ) (9%0"‘6% Zvelogpe(yz)
=1



GAN vs RML-GAN
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GAN vs GCN

Discrete - GAN
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GAN vs GCN
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GAN vs GCN
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GAN vs GCN

Unconditional NLG Question Generation Summarization
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No scheduler required

Sampling closer to q allows to still improve results (state-of-the-art) !
e Use of Monte-Carlo Tree Search guided by pg(y)D(y)



Thank you for your attention |
Please check the paper for more details






