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(0) SHEUISYAW Image Captioning

e Language model conditioned on an image
e C(reate a powerful cross-modal alignment!"

A cat on a branch

[1] Michael Tschannen, Manoj Kumar, Andreas Steiner, Xiaohua Zhai, Neil Houlsby, Lucas Beyer. “Image Captioners Are Scalable Vision Learners Too”. 2023



(0) “IRISA Distinctive Image Captioning

e Datasets captions only describe most salient objects, common tfo many
Images

e Higher word-matching metrics with words common across different
Images, not specific ones

n a porch
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e Fine-grained alignment to describe this image and only this one



(0) " IRISA Cross-modal retriever rewards

e Reinforcement learning to optimize cross-modal similarity of the
generated caption and the target image
o A description that can let the retriever identify the image

- A couple of dogs Similarity reward
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a couple of dogs wearing a santa hat on a porch



(0) IRIS A Contrastive learning

e Dual encoder, each projecting a modality separately
o Similarity using dot product of both representations

T
Pepper the 1

- Text
BUSSLS! PUR ‘_) Encoder
| h 4 A 4 h 4 b 4
i T, | Ty Ty
—> L LTy [T, | T3 | . | LTy
T > L LT | LT | LTy | . |LTy
Image I ;T | 3T, | 13T I3T
Encoder > 3 BB E e T
L Iy INTy | INTy | INT3 | | INTN
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Models From Natural Language Supervision”. 2021
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Contrastive learning

e Dual encoder, each projecting a modality separately
o Similarity using dot product of both representations
e C(ouple closer than any element in the batch
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e Prevent the model from learning ill-formed solutions

a close up of two brown and black dogs
wearing a santa hat on a black and
brown dog with a red hat on a backyard
with a fence in the background




e Prevent the model from learning ill-formed solutions
e Regqularization term in the reward

o KL divergence, CIDEr value, grammar network...

a close up of two brown and black dogs
wearing a santa hat on a black and
brown dog with a red hat on a backyard
with a fence in the background

Similarity reward Regularization reward
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e 3 different contributions to improve CLIP-based RL image captioning
1. Discriminator regularization
2. RL objective on ground truth samples
3. Bidirectional contrastive reward



e 3 different contributions to improve CLIP-based RL image captioning
1. Discriminator regularization
2. RL objective on ground truth samples

3. Bidirectional contrastive reward

e MS COCO dataset

e Trade-off:
o Discriminativeness: recall@k using generated caption (fixed CLIP model)
o Writing quality: BLEU, ROUGE, CIDEr, METEOR and SPICE



(0) IRIS A Discriminator regularization

e Use generated text discriminator scores as regularization
e Simple MLP using CLIP representations as input

Similarity reward Regularization reward

} |
VoLoliell — — [( @tz + (1 — @) regulz) > Vo logpe ()




Discriminator regularization

31,84

Use generated text discriminator scores as regularization
Simple MLP using CLIP representations as input

Similarity reward Regularization reward
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Higher retrieval rate without degrading written quality

Text-to-image retrieval 1 Image-to-text retrieval Writing quality
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® Grammar network ™ Discriminator ® Grammar network ™ Discriminator W Grammar network ™ Discriminator



e RL learns from high-scoring sequences
e Ground fruths are (relatively) good solutions

Similarity reward Regularization reward
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(0) HEUISYAW Weighted Teacher Forcing

e RL learns from high-scoring sequences

e Ground truths are (relatively) good solutions

e Learntoreproduce human-written sequence (TF) but focuses on highly
descriptive ones

Similarity reward Regularization reward

) !
VLo (@) = - ( a roim(@) + (1= Q) regu(2) ) Vo logpe (z)

there is an adult bear that is walking in
the forest

picture of an exterior place that looks
wonderful.




(0) HEUISYAW Weighted Teacher Forcing

e Improve retrieval metrics using only ground truth, without degrading
writing quality
e Better reqularization objective to couple with traditional RL

Text-to-image retrieval 1 Image-to-text retrieval 1 Writing quality
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e Subtract a baseline to the reward to reduce variance

Reward Baseline

VoLg () = — (r(m) — b > Vo logpg ()



(0) IRIS A Baseline rewards

e Subtract a baseline to the reward to reduce variance

Reward Baseline

VoLg () = — (r(m) - b ) Vo logpg ()

1. Use the model itself as a baseline!”

A couple of dogs on a porch (GS)
—>A couple of dogs wearing a santa
hat on a porch (BS)

IIOVL]kI} 1b ed ‘

BS reward - GS reward <€——

Image-to-text baseline

[1] Jaemin Cho, Seunghyun Yoon, Ajinkya Kale, Franck Dernoncourt, Trung Bui, Mohit Bansal. “Fine-grained Image Captioning with CLIP Reward”. 2022



(0) " IRISA Baseline rewards

e Subtract a baseline to the reward to reduce variance

Reward Baseline

VoLyg (m) = — (r(m) - b ) Vo logpg ()

|
1. Use the model itself as a baseline!”
2. Similarity with other (similar) images!®

A couple of dogs on a porch (GS)
—>A couple of dogs wearing a santa
hat on a porch (BS)
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[1] Jaemin Cho, Seunghyun Yoon, Ajinkya Kale, Franck Dernoncourt, Trung Bui, Mohit Bansal. “Fine-grained Image Captioning with CLIP Reward”. 2022
[2] Youyuan Zhang, Jiuniu Wang, Hao Wu, Wenjia Xu. “Distinctive Image Captioning via CLIP Guided Group Optimization”. 2022



(0) IRIS A Bidirectional Contrastive Reward

e Decoupled contrastive loss
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(0) IRIS A Bidirectional Contrastive Reward

e Decoupled contrastive loss
e (losest element in the batch as baseline
e Natively handle both cross-modal directions
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Bidirectional Contrastive Reward

The caption is very descriptive of the image and this image only
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e Decoupled contrastive loss
e (losest elementinthe batch as baseline
e Natively handle both cross-modal directions
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(0) " IRISA Bidirectional reward

19,8319,21

e Unidirectional image-to-text reward only yield significantly lower
text-to-image retrieval results
e Both cross-modal directions are needed for a caption highly descriptive of
this image and this image only
Text-to-image retrieval 1 Image-to-text retrieval 1 Writing quality T
R@10 ’ R@10 i
® Unidirectional m Bidirectional M Unidirectional m Bidirectional M Unidirectional m Bidirectional



