

Institut de Recherche en Informatique et Systèmes Aléatoires

Which Discriminator for Cooperative Text Generation?

Antoine Chaffin, Thomas Scialom, Sylvain Lamprier, Jacopo Staiano, Benjamin Piwowarski, Ewa Kijak, Vincent Claveau

Introduction

Language modeling

- Probability of the **next word given past ones**
- Iteratively add tokens to produce text
- Text generation can be seen as tree exploration
- Root is the prompt, each node correspond to its parent sequence with an additional token

https://huggingface.co/blog/how-to-generate

• Adding some **constraints** is useful to control various aspects

- Discriminators can be trained to detect if a text has the desired property
 - **Real/generated**, writing style, emotion/polarity, ...
- Can be used **to train** the language model (**adversarial** approach)

• But also to **guide the decoding** (cooperative approach)

- Heuristic based iterative algorithm that use randomness to solve deterministic problems with a **too large search space**
- Compromise between exploiting good sequences and exploring promising ones
- Score of a node is defined by children's (simulation)
 - Short-term decisions to optimize a long-term result

- Monte Carlo Tree Search (MCTS) as a **cooperative decoding strategy** achieves **state-of-the-art results in numerous applications**
 - Take **short-term decisions to optimize a long-term result**, offering a longview on the generation process
 - Explore promising branches guided by scores of the discriminator

Repeat a given amount of time

Bidirectional vs. Unidirectional

 Unidirectional attention only require to compute attention score on the additional token (t against t² at step t)

Generative Discriminators (GeDi)^[1]

- Leverage **Class-Conditionnal Language Models** to get discrimination scores for the whole vocabulary
- Get every score in |C| forward passes against |V| for the standard case (|V| >> |C|)

 $P(\text{positive} \mid \text{This book is great}) \propto \frac{P(\text{This book is great} \mid \text{positive})}{P(\text{This book is great} \mid \text{positive}) + P(\text{This book is great} \mid \text{negative})}$

Experiments

Review polarity 🤓 😡

amazon_polarity **[POSITIVE]** Stuning even for the nongamer. This sound track was beautiful! It paints the senery in your mind so well I would recomend it even to people who hate vid. game music! I have played the game Chrono Cross but out of all of the games I have ever played it has the best music! It backs away from crude keyboarding and takes a fresher step with grate guitars and soulful orchestras. It would impress anyone who cares to listen! ^ ^

ag_news

[BUSINESS] Carlyle Looks Toward Commercial Aerospace (Reuters) Reuters -Private investment firm Carlyle Group,\which has a reputation for making well-timed and occasionally\controversial plays in the defense industry, has quietly placed\its bets on another part of the market.

 Main desired property: informative output with restricted input to guide the language model during the generation process

Figure 1: Accuracy (%) of the different type of discriminators w.r.t. the input length (# tokens)

- Does these small differences in accuracy **reflect on resulting samples**?
- Automatic metrics
 - 1. Accuracy: samples belong to the target class 🎯
 - 2. Perplexity: samples are well written 🚣
 - 3. Self-BLEU: there is enough diversity across samples 획 🐚

	amazon_polarity			AG_news		
Value	Accuracy ↑	5 - Self-BLEU \downarrow	Oracle perplexity \downarrow	Accuracy ↑	5 - Self-BLEU \downarrow	Oracle perplexity \downarrow
p(x)	70.8	0.652	10.49	86.6	0.306	29.08
Bidirectional	96.0*	0.531^{*}	12.25	94.8*	0.319	29.13
Unidirectional	93.0*	0.528^{*}	11.98	93.4	0.313	29.99
Unidirectional (100 its)	93.6*	0.522^{*}	10.73	94.6*	0.323	30.92
Generative discriminator	84.4	0.576	11.92	91.8	0.321	29.43

Table 1: Performance of MCTS w.r.t. the metric to optimize on amazon_polarity (left) and AG_news (right) datasets. * indicates statistically significant improvement against Generative Discriminator. Note that no model demonstrated significant improvement over unidirectional discriminator.

- Cached hidden states allow **linear speed gain**
 - Make cooperative decoding tractable for long sequences

MCTS execution time (s) w.r.t. generation step on amazon_polarity

- Exploration is **deeper than wider**
 - Generative discriminators are more costly for MCTS working points

- Standard bidirectional attention discriminators **are justified for accuracycritical tasks**
- For cooperative generation, unidirectional models produce very similar results
 - While offering **an huge speed-up and allowing to scale**
- Generative Discriminators seems interesting at first glance but offers a **less** informative signal
 - Show really useful with **adapted methods that exploit width exploration**
- *« Discriminators »* may **not be transformers**
 - Boolean logic, vocabulary constraint, human evaluation, other heuristics, ...
- Code based on Hugging Face transformer library available on Github

Thank you for your attention ! Any question ?

antoine.chaffin@irisa.fr 🔰 @antoine_chaffin

Institut de Recherche en Informatique et Systèmes Aléatoires

- Heuristic based iterative algorithm that use randomness to solve deterministic problems with a **too large search space**
- Compromise between exploiting good sequences and exploring promising ones
- Score of a node is defined by children's (simulation): short-term decisions to optimize a long-term result

